
PowerShell Day 1
Things I wish I’d known when I started using PowerShell

John D. Cook

http://www.johndcook.com

First released 9 April 2009, last updated 1 February 2010

Introduction

This booklet captures many of the things I wish someone had told me when I first started using

PowerShell. It will not teach you how to use PowerShell, but it will tell you some of the things

surrounding the use of PowerShell that can be difficult to find. For example, here are some of the

questions answered.

 How do I configure PowerShell?

 How do I make PowerShell launch faster?

 How do I get documentation?

 Why did PowerShell make some of the design decisions they did?

 Once I’ve written some useful functions and scripts, where do I put them?

 Where can I find more PowerShell resources?

There are many excellent resources for learning PowerShell listed in the Resource section at the end. In

particular, I recommend reading Bruce Payette’s book Windows PowerShell in Action from cover to

cover. But this eBook is about 50 times smaller than Payette’s book and can help you get your

environment set up right away.

This booklet discusses PowerShell version 1.0 and version 2.0.

http://www.johndcook.com/
http://www.amazon.com/gp/product/1932394907?ie=UTF8&tag=theende-20&linkCode=xm2&camp=1789&creativeASIN=1932394907

Installation and configuration

Download and install PowerShell

PowerShell version 1.0 ships with Windows Server 2008 and will ship with future Microsoft operating

systems including Windows 7. You can download PowerShell version 1 for Windows XP Service Pack 2,

Windows Server 2003, and Windows Vista here.

PowerShell 1.0 requires the .NET Framework 2.0. If you have the 2.0 framework installed, you can install

PowerShell via the Windows Update service.

PowerShell version 2.0 is available here. If you have version 1.0 installed, you must uninstall it before

installing version 2.0. If you already have PowerShell installed, you can tell which version it is by typing

$host.version.

Download and install the PowerShell Community Extensions

The PowerShell Community Extensions (PSCX) library is available here.

PSCX is not necessary for running PowerShell, but it does provide a large collection of useful cmdlets and

functions. In addition, installing PSCX provides a nice default profile (see section on profiles below) and

installs the “Open PowerShell Here” tool. This lets you right-click on a folder in the Windows File

Explorer, select “Open PowerShell Here.” This will create a new instance of PowerShell whose working

directory will be the folder you clicked on.

Some of my favorite features from PSCX are the clipboard functions Get-Clipboard and Out-

Clipboard and the email command Send-SmtpMail. It’s also fun to play with speech synthesis via

Out-Speech.

The only drawback to installing PSCX is that it does make PowerShell a little slower to start up.

If you would like the “PowerShell Here” feature without installing PSCX, see Scott Hanselman’s blog post

on the subject.

Set the execution policy

PowerShell was designed from the beginning with security in mind. PowerShell will not run scripts by

default. You have to set the execution policy before you run your first script.

http://www.microsoft.com/windowsserver2003/technologies/management/powershell/download.mspx
http://support.microsoft.com/kb/968929
http://www.codeplex.com/Wiki/View.aspx?ProjectName=PowerShellCX
http://www.johndcook.com/blog/2008/04/30/integrating-the-clipboard-and-the-command-line/
http://www.johndcook.com/blog/2008/10/03/experimenting-with-out-speech-in-powershell/
http://www.hanselman.com/blog/IntroducingPowerShellPromptHere.aspx

From the PowerShell prompt, run

Set-ExecutionPolicy RemoteSigned

This will allow you to run PowerShell scripts that you write but will not allow scripts to run that you

download from the Internet or receive as email attachments.

If you do not remember to set the execution policy you might see something like the following.

 PSH> .\myScript.ps1

 File D:\myScript.ps1 cannot be loaded. The file D:\myScript.ps1

 is not digitally signed. The script will not execute on the

 system. Please see "get-help about_signing" for more details..

 At line:1 char:13 + .\myScript.ps1 <<<<

Make PowerShell launch faster

When Microsoft released the first version PowerShell, the installation package neglected to include code

to run NGEN. This has been fixed in version 2.0 of PowerShell, but there is a work-around for the

Version 1.

Jeffrey Snover, the leader of the PowerShell development team at Microsoft, explains how to perform

the steps the installer left out. On my desktop, the time to launch PowerShell 1.0 went from around 13

seconds to around 2 seconds after applying the fix he recommends. See the Appendix for a script you

only need to run one time that will run NGEN and cause PowerShell to open much faster.

Unfortunately, the PowerShell Community Extensions recommended here cause PowerShell to load

slower. If you use the extensions, they’re worth the increased start time. However, there’s no reason

not to run the script that makes PowerShell itself load more quickly.

Configure the command prompt

To configure your command prompt, simply create a function named prompt and put it in your profile.

For example, the following will cause the working directory to be displayed.

function prompt { "$pwd> " }

Note that you could put any code you want inside the prompt function and that code will run every time

you hit return.

Here’s a prompt function that will display the right-most part of the working directory. This keeps long

working directory names from taking up most of the space at the command line.

function prompt

{

 $m = 30 # maximum prompt length

 $str = $pwd.Path

 if ($str.length -ge $m)

 {

 # The prompt will begin with "...",

 # end with ">", and in between contain

 # as many of the path characters as will fit,

 # reading from the end of the path.

 $str = "..." + $str.substring($str.length - $m + 4)

 }

 $host.UI.RawUI.WindowTitle = "$env:computername $pwd.path"

 "$str> "

}

For example, if the current directory were

C:\Documents and Settings\Administrator\My Documents\My Music

then the prompt would be

...ator\\My Documents\\My Music>

The prompt function above also sets the command window title to contain the computer name and the

working directory.

If you want the changes to your prompt to persist, add the prompt function to your profile. (See the

next section on profiles.)

Profiles

Profile information can be found in four different files. Why so many? Configuration information might

apply to all users on a machine or be specific to a single user. Also, you can run PowerShell via

Microsoft’s command prompt or through a third-party tool. The four profile files correspond to all for

combinations of (all users, single user) and (all shells, just Microsoft’s shell). For more information, see

the MSDN article Windows PowerShell Profiles. If you’re the only user on your PC and you only use

Microsoft’s shell, the distinction doesn’t matter.

There are two additions you can make to your profile to make it easier to debug PowerShell scripts.

First, add this line

Set-PSDebug -Strict

to your profile to cause PowerShell to complain if you try to use a variable before initializing it. Also, add

$ErrorActionPreference = "stop"

http://msdn.microsoft.com/en-us/library/bb613488.aspx

to cause PowerShell to stop executing a script as soon as an error occurs.

Getting help

To pull up help from the command prompt, type Get-Help followed by the name of the topic you

want help on. You may want to add the –detailed option to get more information.

To get help about a particular object, use Get-Member. For example, you may want to pipe the output

of a command to Get-Member to learn more about the type of object the command returns.

See Keith Hill's eBook Effective Windows PowerShell for more information on how to use Get-Help

and Get-Member.

The PowerShell Graphical Help File provides the same information as is available from the command

line, but in a CHM format that is easier to read.

Sitting down at the command prompt

PowerShell is case-insensitive. By convention, documentation uses mixed-case in order to make sample

code easier to read, but most people will simply type in lower-case at the command prompt.

You can’t just type in the name of a script file and run it. You have to specify the path. If the file is in

your working directory, you need to put .\ in front of the file name, as in

.\foo.ps1.

 You could also use ./ since PowerShell accepts forward and backward slashes in paths. You also have

to specify full file names.

If a script name has a space in it, you’ll need to include the name in quotes and preface it with an

ampersand (&) in order to run it. For example, to run a script foo.ps1 in your Documents and

Settings folder, the command would be

& "C:/Documents and Settings/foobar.ps1"

Aliases

All PowerShell cmdlets follow the verb-noun naming convention. However, some cmdlets have aliases,

nicknames for the same object. For example, gcm is a built-in alias for Get-Command. You can define

your own aliases using the Set-Alias cmdlet.

http://keithhill.spaces.live.com/blog/cns!5A8D2641E0963A97!6930.entry
http://www.microsoft.com/technet/scriptcenter/topics/winpsh/pschm.mspx

PowerShell comes with numerous aliases to ease the transition to PowerShell form either Windows’

cmd.exe command line or from Unix shells. Sometimes one cmdlet has multiple aliases. Here are a

few examples.

Alias Cmdlet
cd Set-Location

dir, ls Get-ChildItem

copy, cp Copy-Item

del , rm Remove-Item

The Get-Alias cmdlet can be used to cross-reference aliases and cmdlets. Calling Get-Alias

without any parameters lists all aliases and their definitions.

To look up the definition of a particular alias, supply that alias as a parameter. For example,

Get-Alias cd

returns Set-Location. Going in the opposite direction takes a little more work. For example, the

following command shows how to look up all aliases for the Remove-Item cmdlet.

get-alias | where-object {$_.definition -match "remove-item"}

That command shows that ri, rm, rmdir, del, erase, and rd are all aliases for Remove-Item. It

does so by searching the output of get-alias using a regular expression match.

Tell me why

This section looks at why the PowerShell team made some of the decisions they did. Understanding the

decisions makes it easier to remember the results.

Three of the most surprising features of PowerShell are as follows.

1. Function arguments are delimited with spaces, no commas and no parentheses.

2. The back tick ` is the escape character, not the back slash \.

3. The comparison operators are –eq, -gt, etc. rather than = or >.

Each of these quirks has a good explanation: PowerShell is a Windows shell.

PowerShell functions do not use parentheses and commas because this would become tedious when

using PowerShell from the command line.

PowerShell uses the back tick because Windows uses the backslash as a path separator. PowerShell

allows forward slashes as path separators but it does not require them. Disallowing back slashes in

Windows paths would have caused havoc.

Ancient shell tradition dictates that > is an output redirection operator. This is the case in both the Unix

and Windows worlds. The PowerShell team decided that violating this tradition would have caused great

confusion. The team also placed a high priority on consistency. So if “greater than” must be represented

by letters rather than by a symbol, the same should be true for other comparison operators.

There is one exception to the “no parentheses, no commas” rule for function calls: when calling

methods on .NET objects, use parentheses around the argument list and separate arguments with

commas.

Next questions

Once I've written useful functions and scripts, where do I put them?
If you’ve written a function that you think you may use frequently, you could put it in your profile. Or

you may want to have an alias file separate from your profile but called from your profile. The way you’d

do this is to “dot source” the function file from your profile: add a line to your profile consisting of a

period, a space, and the name of your function file. For example:

. c:\foo\bar\myfunctions.ps1

Dot sourcing a file brings that files definitions into the current session.

Now suppose you’ve written some scripts that you want to call conveniently. One option would be to

put your script files to a directory listed in your Windows path (or equivalently, add your scripts

directory to your Windows path). Another option would be to create a PSDrive (roughly, a mapped drive

that only PowerShell knows about) and put all your scripts there. For example, the command

New-PSdrive -name scripts -PSprovider filesystem –root c:\foo\bar

creates a PSDrive named scripts pointing to the c:\foo\bar directory on your computer. To run a

script

c:\foo\bar\myscript.ps1

you could type

scripts:myscript.ps1

from the command prompt.

How do I know what has been defined in memory?
Functions defined at any given time are part of the function PSDrive. You can work with this drive

just as you’d work with any other drive. For example, the command dir function: will list all

functions. The command dir function:/G* will list all functions whose name with “G.” Similarly,

the variable drive contains all variables defined in the current session.

Resources

Blogs and web sites

PowerShellCommunity.org portal for many other resources

Windows PowerShell Blog by the PowerShell development team

Dmitry’s PowerBlog by Dmitry Sotnikov

The PowerShell Guy by Marc van Orsouw (a.k.a. /\/\o\/\/)

PowerShell Community blog aggregator

Windows PowerShell Owner’s Manual from Microsoft

Podcasts

Power Scripting by Jonathan Walz and Hal Rottenberg

Get-Scripting by Alan Renouf and Jonathan Medd

Books

Windows PowerShell in Action by Bruce Payette (2nd edition available as early access)

Mastering PowerShell by Tobias Weltner (free eBook)

Effective Windows PowerShell by Keith Hill (free eBook)

PowerShell Cookbook by Lee Holmes

Tools
PowerGUI free graphical interface and editor

http://www.powershellcommunity.org/
http://blogs.msdn.com/powershell/default.aspx
http://dmitrysotnikov.wordpress.com/
http://thepowershellguy.com/blogs/posh/
http://www.powershellcommunity.org/Blogs/ExternalBlogs.aspx
http://www.microsoft.com/technet/scriptcenter/topics/winpsh/manual/default.mspx
http://powerscripting.wordpress.com/
http://get-scripting.blogspot.com/
http://www.amazon.com/gp/product/1932394907?ie=UTF8&tag=theende-20&linkCode=xm2&camp=1789&creativeASIN=1932394907
http://www.manning.com/payette2/
http://powershell.com/cs/blogs/ebook/
http://keithhill.spaces.live.com/blog/cns!5A8D2641E0963A97!6930.entry
http://www.amazon.com/gp/product/0596528493?ie=UTF8&tag=theende-20&linkCode=xm2&camp=1789&creativeASIN=0596528493
http://www.powergui.org/index.jspa

PowerShell Plus interactive console from Idera

PowerShell Toolbar by Shay Levy

PowerShellPack from Microsoft

Appendix

The following code comes from the PowerShell team blog. Copy the following code into a text file

named update-gac.ps1 and run the file by typing

.\update-gac.ps1

from the PowerShell prompt. This will cause PowerShell to launch significantly faster.

Set-Alias ngen (Join-Path

([System.Runtime.InteropServices.RuntimeEnvironment]::GetRuntimeDirectory()) ngen.exe)

[AppDomain]::CurrentDomain.GetAssemblies() |

 sort {Split-path $_.location -leaf} |

 %{

 $Name = (Split-Path $_.location -leaf)

 if ([System.Runtime.InteropServices.RuntimeEnvironment]::FromGlobalAccessCache($_))

 {

 Write-Host "Already GACed: $Name"

 }else

 {

 Write-Host -ForegroundColor Yellow "NGENing : $Name"

 ngen $_.location | %{"`t$_"}

 }

 }

http://www.idera.com/content/show65.aspx
http://blogs.microsoft.co.il/blogs/scriptfanatic/archive/2009/05/12/powershell-toolbar-updated.aspx
http://code.msdn.microsoft.com/PowerShellPack
http://blogs.msdn.com/powershell/archive/2008/09/02/speeding-up-powershell-startup-updating-update-gac-ps1.aspx

About

This document is available at http://www.johndcook.com/powershellbooklet.html

Thanks to the people who reviewed this booklet and made helpful suggestions:

Clift Norris, Steven Murawski, Sarah Edmonson.

I hope you’ve found this helpful. Please contact me if you have any comments or corrections.

I blog daily at The Endeavour.

John D. Cook

http://www.johndcook.com/powershellbooklet.html
http://blog.usepowershell.com/
http://johndcook.com/contact.html
http://johndcook.com/blog

